lunes, 3 de mayo de 2010

Clonacion en Animales y Plantas


CLONACIÓN ANIMAL

En la naturaleza, hay dos formas de reproducción celular: sexual y asexual. En la reproducción sexual, propia de los organismos pluricelulares, ambas células germinativas, la femenina u oocito y la masculina o espermatozoide, se fusionan para formar una nueva célula, llamada cigoto. Esta nueva célula no sólo comienza a diferenciarse, sino también se multiplica, mediante el mecanismo de reproducción asexual llamado mitosis. Un individuo adulto será el resultado de las sucesivas divisiones mitóticas experimentadas por el cigoto.

La reproducción de tipo sexual confiere una ventaja competitiva a los organismos que la poseen, pues al ocurrir un proceso de recombinación génica de carácter aleatorio, aumenta la probabilidad de la descendencia para sobrevivir en ambientes de variabilidad imprevisible8.

Los organismos pluricelulares son pues, clones ordenados de células con un mismo genoma, pero especializadas hacia funciones distintas. Esto indica que cuando se forma el cigoto, su repertorio de actividades, aunque limitado, es suficiente para dar origen a organismos con una elevada complejidad estructural. El grado de complejidad dependerá de lo que se conoce como proceso de diferenciación. Se entiende por diferenciación, el resultado de la expresión o de la inhibición de determinados grupos de proteínas, con la consecuente formación de tejidos. Los tejidos son grupos de células somáticas especializadas, que debido al proceso de diferenciación experimentado, están inhabilitadas para dar origen a nuevos individuos9.

Es claro que el asunto de fondo en la clonación tiene sus raíces en las primeras etapas del proceso evolutivo, cuando los microorganismos existentes comenzaron a producir, mediante mitosis, copias exactas de sí mismos. Así, una célula somática (no sexual), se podía replicar a sí misma, de modo que el material genético de las células hijas resultaba idéntico al de la célula progenitora. En ese orden de ideas, se podría considerar que la mitosis es un tipo de clonación “natural” que no necesita manipulación alguna.

CLONACIÓN ARTIFICIAL

En contraste con la llamada clonación natural, las técnicas seguidas para la clonación celular artificial, requieren un proceso de elaboración o de manipulación que permite obtener copias idénticas o casi idénticas de las células madre o progenitoras utilizadas. Si el producto o embrión se transfiere a un útero, se produce la implantación en el endometrio y se desarrolla un nuevo ser (clonación reproductiva). Pero si se transfiere a un medio de cultivo, el embrión dará origen a células madre embrionarias con la potencialidad para diferenciarse hacia cualquier tipo de célula adulta (clonación terapéutica).

MÉTODOS DE CLONACIÓN

1. Partición. En esta técnica se utilizan embriones octocelulares, en estado de preimplantación. A partir del embrión seleccionado, se toman mitades o secciones que posteriormente se introducen dentro de zonas pelúcidas naturales o artificiales. A continuación, se efectúa la implantación del producto en el endometrio. El número máximo de células del embrión, no puede ser superior a 8, porque a partir de este momento, se inicia la expresión del genoma embrionario. Los individuos obtenidos son prácticamente idénticos entre sí, aunque diferentes a los progenitores, por lo cual se considera que son el equivalente de los gemelos monocigóticos10. Esta técnica se ha seguido ampliamente para la clonación de animales de granja11. Como ejemplos de esta técnica están las ovejas Megan y Morag, del Roslin Institute6.

2. Clonación por transferencia nuclear de células somáticas (SCNT: Somatic Cell Nuclear Transfer). Los requisitos mínimos para la SCNT incluyen el uso de dos tipos de células: somáticas o no sexuales, y sexuales femeninas, u oocitos. Los núcleos de células somáticas de individuos postnatales se transfieren dentro de oocitos o de cigotos enucleados12-14. Esta técnica tiene la ventaja que permite conservar el genoma durante la diferenciación celular y la capacidad del citoplasma celular para reprogramar la actividad génica y aumentar la redireccionalidad de la diferenciación celular. Sin la aplicación de estos dos principios, la clonación no es posible15.

Para clonar a un ser vivo mediante SCNT, se extrae el material genético de ambos tipos de células y, a continuación, se inyecta el núcleo de la célula somática que se desea clonar (donante), dentro del oocito previamente enucleado (receptor). El transplante de núcleos somáticos dentro de oocitos enucleados tiene como fin reproducir los procesos bioquímicos y fisiológicos que, de manera natural, se desencadenan durante la fertilización.

Vale entonces, en este orden de ideas, establecer una comparación entre la fertilización y la clonación.

Durante la fertilización, el primer evento que ocurre es la sincronización de los pronúcleos masculino y femenino. Cuando el espermatozoide atraviesa la membrana plasmática del oocito, su núcleo se encuentra en la etapa G0 del ciclo celular, mientras que el núcleo del oocito está detenido en la metafase de la segunda meiosis. Los oocitos recientemente ovulados presentan una elevada concentración de Factor Promotor de la Maduración (siglas en inglés MPF), una proteincinasa que induce la ruptura de la membrana nuclear y la condensación de los cromosomas, motivo por el cual pueden hacer su ingreso al núcleo ciertos factores citoplasmáticos que son necesarios para la replicación del ADN16. Los dos pronúcleos se llevan entonces a la etapa S del ciclo, caracterizada por una síntesis activa de ADN. La reanudación de la segunda meiosis ocurre como consecuencia del aumento cíclico de [Ca2+] intracelular, que provoca a su vez la inhibición de las dos subunidades constitutivas del MPF -ciclina B y cdc1- con el descenso consecuente en la actividad del MPF17,18.

Cuando, en la clonación, se introduce el núcleo de la célula somática donante en la célula receptora u oocito, se efectúa un proceso similar de sincronización o reprogramación del ciclo celular, con la finalidad de que ocurra un acoplamiento fisiológico entre el núcleo y el citoplasma. La reprogramación del ciclo celular, o lo que es lo mismo, la reprogramación nuclear, son términos que describen los cambios en la actividad génica inducida experimentalmente por el transplante de un núcleo dentro de un medio citoplasmático diferente. La reprogramación es un requisito indispensable para el éxito del procedimiento, pues permite que la expresión génica de la célula somática sea la apropiada para un desarrollo embrionario normal13,19. Esta reprogramación se efectúa en el tiempo transcurrido entre la fusión núcleo-citoplasma y la activación del producto resultante19.

Si se transplantan núcleos de células somáticas, parcial o totalmente diferenciadas, dentro de oocitos enucleados de anfibios o de mamíferos en metafase de la segunda meiosis, se podrán obtener blastocistos, a partir de los cuales se formará un amplio rango de tejidos y de tipos celulares20. El proceso de sincronización o reprogramación se efectúa mediante el estímulo de la entrada de Ca2+ al oocito, ya sea con un impulso eléctrico suave o con la utilización de ionomicina13,20 o puromicina19. El núcleo de la célula somática donante no debe haber iniciado o completado la replicación del ADN, para que el cigoto pueda tener una ploidía o complemento cromosómico normal. Si se activa el oocito, y se le permite entrar a su primer ciclo celular, la actividad del MPF caerá y no ocurrirá la ruptura de la membrana nuclear después de la transferencia del núcleo de la célula donante. Así las cosas, el núcleo determina si habrá o no replicación del ADN, de modo que pueda esperarse una ploidía normal -necesaria para un normal desarrollo- en todos los estados del ciclo celular de la célula donante16. Se considera entonces que el oocito es un receptor universal, pues no sólo provee un medio apropiado para el núcleo de la célula donante en cualquier estado del ciclo sino que, independientemente de éste, tiene la capacidad para actuar sobre la estructura y la función de la cromatina del núcleo somático, de modo que lo lleva de nuevo a un estado de totipotencialidad16,21.

Al aplicar la técnica de la transferencia nuclear, no sólo se debe procurar mantener una ploidía normal en el producto formado, sino también evitar la destrucción de la cromatina. Por este motivo se han hecho investigaciones sobre la evaluación de la técnica, cuando se utilizan células donantes en diversas etapas del ciclo celular (G1, S, G2, M), y como células receptoras, oocitos en metafase de la segunda meiosis13,22-28. Como células somáticas donantes, al principio se utilizaron las células quiescentes en fase G0, que habían abandonado el ciclo celular en fase G1 y, que, por tanto, tenían un complemento cromosómico diploide. Como ejemplo de células en fase G0 se encuentran células del cúmulus, células de Sertoli y neuronas, aunque también se pueden obtener artificialmente en un medio de cultivo, mediante la deprivación de factores de crecimiento29. Aunque estas células son menos activas en la transcripción y, además contienen poblaciones distintas de ARN mensajero (ARNm) que las que se hallan en fase G1, se prefirieron, pues sus mismas características, de alguna manera facilitan la acción de los factores citoplasmáticos del oocito necesarios para modificar la expresión génica del embrión, y, por tanto, la reprogramación nuclear13,16. También se han utilizado células somáticas donantes en fases G125,28, G226 y M27 (Gráfica 1).

Se ha obtenido una notable eficiencia en el desarrollo de los embriones así clonados hasta el estado de blastocisto, cuando el núcleo inyectado se encuentra en fase M22,23. En cualquier caso, una clonación exitosa requiere reprogramar el núcleo de la célula somática donante, debido a que la cromatina ha sufrido previamente transformaciones epigenéticas incompatibles con el desarrollo embrionario, que incluyen la desacetilación de las histonas y la metilación del ADN30-32. Recientemente, Hwang et al.19 obtuvieron células madre embrionarias a partir de blastocistos humanos. El éxito de su procedimiento radicó en que el tiempo destinado a la reprogramación celular fue de unas pocas horas, en contraste con la metodología utilizada en experimentos con otras especies de mamíferos33. Sin embargo, no siempre la reprogramación nuclear ocurre de modo satisfactorio. Así hay informes de hallazgos de embriones clonados a partir de células somáticas donantes, que fracasan en la reactivación de genes claves para el desarrollo embrionario normal31. En estos embriones se pueden expresar precozmente genes específicos de las células donantes34, y, adicionalmente, presentar patrones aberrantes de metilación del ADN en el trofoectodermo35,36, así como mosaicismo35. Por otra parte, las células somáticas, a lo largo de las sucesivas divisiones mitóticas sufridas in vivo, han perdido parte de los extremos de los cromosomas, denominados telómeros. Los telómeros son repeticiones cortas en conjunto (tándem) de ADN, que se replican mediante la acción de la enzima telomerasa. Se ha encontrado que variables como la longitud de los telómeros y la actividad de la telomerasa están significativamente disminuidas en las células somáticas donantes, cuando se comparan con las células madre embrionarias como fuente donante de núcleos. Debido a que los telómeros desempeñan un papel estabilizador del ADN, su acortamiento progresivo puede incidir, tanto en los procesos de envejecimiento celular, como en la aparición de anormalidades cromosómicas, espermatogénesis defectuosa, apoptosis aumentada y proliferación celular disminuida en médula ósea, bazo y testículo, en animales clonados a partir de células somáticas donantes21.

Es claro entonces que el estado de diferenciación de la célula donante afecta directamente la eficiencia de la clonación, y en tal sentido se considera que las células madre embrionarias ofrecen ventajas cualitativas sobre las células somáticas como posibles donantes en la técnica de transferencia nuclear23,30,37.

A pesar de los éxitos sucesivos obtenidos en la clonación de células adultas, la SCNT dista mucho aún de ser considerada una técnica eficaz. En primer lugar, muchos embriones clonados mueren inmediatamente después de la implantación, o bien, a lo largo del desarrollo prenatal38-40. También se ha observado, que si bien algunos individuos sobreviven hasta el término de la gestación, mueren prontamente debido a un amplio rango de diversas entidades35. Si logran sobrevivir, presentan una talla corporal y un tamaño de la placenta mayores que lo normal38,41-45, obesidad46, así como defectos en riñones, corazón, hígado, pulmones y cerebro47.

Hasta hace poco tiempo se desconocía cuál era la razón biológica y cuáles los problemas técnicos causantes de tales fracasos48. En el caso de primates no humanos, como los monos Rhesus macacus, los intentos de clonación han fallado, debido a que, durante la enucleación de los oocitos no fertilizados -previa a la transferencia nuclear- se removían ciertas proteínas necesarias para la organización normal del huso mitótico, como las proteínas motoras de los microtúbulos y del centrosoma35,49. La dificultad fue en apariencia resuelta por Hwang y su equipo de colaboradores19, quienes recientemente obtuvieron blastocistos humanos. Ellos extrajeron el complejo ADN-huso mitótico inmediatamente después de la aparición del primer cuerpo polar, a través de un orificio en la zona pelúcida, en lugar de aspirarlo con una pipeta de vidrio, tal como es descrito por otros autores8.

En especies de mamíferos como perros, conejos, cerdos, caballos, gatos y seres humanos, el éxito de la clonación ha sido altamente dependiente de la disponibilidad de tecnologías especie-específicas, que incluyen el cultivo, la activación, la micromanipulación y la transferencia de huevos y embriones a receptores19,50-55. Es así como en la aplicación de la SCNT en cerdos, si se efectúan simultáneamente los procesos de fusión núcleo-citoplasma y activación del producto, se obtienen resultados satisfactorios. En contraste, cuando se utiliza el mismo proceso en bovinos y en seres humanos, los porcentajes de fusión y de clivaje o segmentación son muy bajos y no se forman blastocistos. Por tanto en estas especies, parece ser necesario un mayor tiempo de reprogramación entre fusión y activación con el fin de obtener un número significativo de blastocistos. Por otro lado, el tipo de sustrato energético añadido al medio de cultivo (fructosa en lugar de glucosa) también parece ser un factor determinante para la formación de blastocistos en bovinos y en seres humanos19,56.

3. Paraclonación. Consiste en inyectar núcleos de células madre embrionarias en cultivo, dentro de oocitos enucleados y, a veces, de cigotos enucleados. Los blastómeros se obtienen a partir de varias fuentes como la masa celular interna o el trofoectodermo de embriones preimplantados y sus núcleos son transferidos dentro de oocitos enucleados6. Los individuos obtenidos son casi idénticos entre sí, aunque diferentes a los padres del embrión que aportó el núcleo transferido57. Se ha demostrado que la supervivencia de los clones formados a partir de células madre embrionarias en el instante del nacimiento o hasta la edad adulta, es 10 a 20 veces mayor que en los derivados de células somáticas23,30,37,43. Por otra parte, los clones derivados de células madre embrionarias tienen mejores posibilidades de reactivar completamente genes claves para el desarrollo embrionario -tales como oct4 y 10oct4- y así constituir una población de células verdaderamente totipotenciales19,23,31. Sin embargo, las células madre embrionarias, aunque requieren un menor grado de reprogramación que las células somáticas, presentan una elevada inestabilidad epigenética en cultivos in vitro. La inestabilidad se refleja en una expresión aberrante de la huella genética, de modo que, cuando estas células se utili-zan como donantes para la clonación reproductiva, el fenotipo fetal y placentario de los clones, exhibe graves patrones de anormalidad. Sin embargo, cuando se emplean como fuente de núcleos para la clonación terapéutica, en apariencia no ocurre este error, pues, durante la reprogramación, se seleccionan tan sólo las células competentes30,37,41.